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Problems of propagation of sound and shock waves in multicomponent media are con- 
sidered. In the general case the investigations can be based on the theory of interpene- 

trating motions of a compressible fluid given earlier in [l]. In the present work the rela- 
tive motion of the components (gases, liquids and solid particles) is neglected, i. e. the 
medium is assumed to be uniform with respect to velocity. Increased complexity of the 

density p - pressure p relationship distinguishes the present motion from that of the 

simple, one-component media (e. g. of a perfect gas). 
Special attention is given to the flows of media containing some.incompressible com- 

ponents, and it is shown that the velocity of sound in such a medium can be less than the 

velocity of sound in any one component. 
Liakhov was the first @] to develop the one-velocity theory of a multicomponent 

medium. In the present paper we differ from [2] in assuming the irreversibility of the 

shock compression of the component. 

1. Let us consider an n-component medium. We shall denote the relative density 

of the jth component (j = 1, . . . . n), i.e. the mass of the component per unit volume 
of the medium by p j, and its actual density by p j”. Obviously 

P =p1 +...+pn (1.~1 

Together with pj and pi0 we introduce the “porosities” fj, which we define by 

fj = Pj I P3’ ‘(i=i,....n) II.3 

and which represent the partial volumes of the components. By (1.1) and (1.2) we have 

P = fiP1” +*** + fnpnO, fi +**-+fn = 1 (1.3) 
Following the practice of [l] we shall assume that the component compressibilities 

are independent and, that the pressures of all components are equal to each other and 
to the pressure p of the medium. Then 

Pj” = cpj (P) ;(iFl,..., n) (1.4) 

where:ql are known functions (when the components are incompressible, we have cpj = 
= const). Inserting (1.4) into (1.3) we find 

P = fGP,(P) + . ..+ fn% (P) (1.5) 

If the functional relations f j = fj (p) are known,(l. 5) closes the system consisting 
of the continuity equation and of-three equations of motion of the medium. Let us obtain 
these relations for the case of an isentropic flow. 

Denoting the initial state parameters of the mixture by the subscript 0, we have 

(1.5) 
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where vj is the specific volume of the jth component. We have, by definition, fj = 
= vcrj/v, where V is the specific volume of the mixture. 

Using these relations we can show that 

f, = f&j ( i ~t&iP 
k=l 

from which it follows that (1.5) will have the form 
71 77 

p = 2 fj&joO ( 2 fjoh)-l 
j=l j=l 

or, after certain transformations and making use of (1.6). 

(l-7) 

If the components with indices m + 1, . . . , n are incompressible, Eq. (1.7) 

becomes 

(1.8) 

Let us now define the velocity of sound in the medium and in each of its components, 

by dp c-a = - dPj" 

dp ’ 
cj-a = - 

dp (1.9) 
where the partial derivatives are taken at constant entropy. This is equivalent, in the 
present case, to the constancy of the parameters accompanied by the subscript 0. 

From (1.8) and (1.9) we have 

which, by virtue of the arbitrariness of the initial state, can be written in the form ( *) 

(1 .lO) 

If the medium consists of a single component, then m = 1, plo = p , fl = 1 and, 
consequently, c = cl. 

The range of applicability of (1.10) is limited by the assumption that all component 
pressures are equal. If the “pore” pressure differs from the “skeleton” pressure, then 
(1.10) is inapplicable, An approach differing from the Biot’s theory can be developed 
here, in which the skeleton is taken as an elastic medium. Motion of the skeleton is 
given by the equations of elasticity together with the corresponding boundary conditions, 
and when the initial porosity is known, it defines the instantaneous porosity. A multicom- 
ponent medium moves through the medium of known, variable porosity thus defined, 

*) The same result is obtained by using the equations 
Pj 1 Pj0 = P 1 PO (f = I,...$) 

which follow from ,the equations of continuity of the medium in toto and of each com- 
ponent separately, under the assumption that the phase transitions and relative motion 
of components are absent. 
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with a uniform velocity of its components. The theory based on this approach is prefer- 
able to the Biot’s theory, since it avoids the necessity of introducing additional constant 
media ; moreover, its accuracy will increase with increase of the differences between the 

pressure acting on the skeleton and the pressure in the pores. 

2. The approach used above to obtain the velocity of the sound waves can also be 
applied to the motion with shock waves. We note however, that in this case the law of 

isentropic compression of each component used in r2] cannot be used to obtain a formula 
for the mean density p of the medium. Instead, a corresponding Hugoniot adiabate in 
the form (*) PjO = % (P) (i=l,...,n) (2.1) 

where the functions $j are known, should be taken for each component. 

Let D and u be the velocity of the shock wave and the velocity of the medium behind 
the wave (the medium is at rest ahead of the wave). We then have 

Dpou = P - ~0, bpo = (D - z+, 

which yields the following expression for D and u : 

02 = p p--O 
PO P-P0 (2.2) 

Since in the present cas’e functions qpplay the part of qj we can, as before, obtain the 
formula for p using (2.1) 

which in the case of incompressibility of the components with the indices j = m +i , . . 
. . . . rt,becomes 

(2.3) 

We can therefore rewrite (2.2) as 

1 PO 
F= 

P - PO [ 
1 - iI f* - ji;lfio] 

u2_P-Po 1 -p 
PO [ 

-:,a- n! 
2 fl i0 

3 j=m+l 

(2.4) 

In a number of cases, certain components such as liquids or solids may have their 

Hugoniot adiabate replaced by an isotherm or an isentrope. In the formulas (2.3) and 
(2.4) such a substitution will only alter the corresponding functions +j. 

We shall consequently adopt the Hugoniot adiabate for the gaseous component (j =l), 
and an isentrope for the liquid (j = 2) and solid (j = 3) components. 

Then we have WfPO 
91= IhO0 xpo+p 

(2.5) 

* ) The functions ~j depend not only on p, but also on the pressure po ahead of the dis- 

Continuity. 
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Fig. 1 

(cont. ) 
qj = pjo” [ 1 + “‘;~~-$‘]‘I’ (i=2, 3) 

x = (r1 + 1) I (Yl - 1) 
Here the constants k, and ksdenote the isentropic 

indices for the liquid and solid component andyt is 

the gas isentropic exponent (the gas is assumed per- 
fect). 

In particular for air, water and quartz under the 

normal conditions we can assume that the true mass 

densities are 0.125, 102 and 265kg. sec2/m4, the 
velocities of sound are 330.1500 and 4500 m/set 
and the isentropic exponents are 1.4, 3 and 3, respec- 
tively. By virtue of the above, for air and water we 

have, respectively, p”~0c~~2=i.31~i04 kg/m2 and 

ploO clo2 = 2.25.108 kg/mJ. Using these values together 
with the formula (1.10) we find. that, for j1 = 0.01 

the velocity of sound in the air-water mixtute is 
c = 114m/sec, while for fl = 0.1 it falls to 38 m/set 

which is less than the velocity of sound in any of the components. The Fig. 1 depicts the 
velocities of the shock waves for air-water mixture obtained from (2.4) and (2.Q plot- 
ted (in solid lines) as the functions of flo versus the pressure ratio p / p. at the discon- 
tinuity where PO = 1 atm . Results of 121 are shown in broken lines. 
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Variational principles were used as a starting point for constructing models of various 
continuous media in [l-5], where their application was studied in detail. In the present 
paper which is a continuation of [6], the generalized variational relation is extended to 
embrace the media possessing surfaces of discontinuity of the crack type. A problem 
concerning the character of a singular solution to the plane problem near the ContollT of 


